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THE ASYMPTOTIC FORM OF THE SOLUTIONS OF THE INTEGRAL EQUATIONS OF 
POTENTIAL THEORY IN THE NEI~HBOURHOOD OF THE CORNER POINTS OF A CONTOUR* 

S.S. ZARGARYAN and V.G. MAZ'YA 

The integral equations of the theory of the logarithmic potential on a 
closed piecewise-smooth contour are considered. Asymptotic representations 
are obtained for the solutions of the integral equations in the region of 
the corner points of the contour , and formulas are obtained for the 
coefficients of these representations. As in /I/, information on the 
solutions of the integral equations of potential theory are derived from 
the well-known results of the asymptotic form of the solutions of the 
internal and external Dirichlet and Neumann problems. It is shown that, 
irrespective of the value of the angle in the region of the corner points 
of the contour, the solution of the integral equation of the internal 
Dirichlet problem has an unevenness, while the solution of the integral 
equation of the external Neumann problem has a singularity, whereas both 
the solutions of the boundary value Dirichlet and Neumann problems obtain 
irregularities in the region of the corner points only for angles 
occurring in the region. 

Quite a number of asymptotic forms of the solutions of elliptic boundary value problems 
are known in the region of corner and conical points /2, 31. However, the asymptotic behaviour 
of the solutions of the integral equations of the same problems have not been investigated, 
despite the need for such investigations for the method of boundary integral equations. 

Below, using the example of the integral equations of the theory of the logarithmic poten- 
tial, we describe a method for determining the asymptotic forms of the solutions in the region 
of the corner points of a contour. Only boundary value problems for harmonic functions of two 
variables are considered, but the scheme proposed is of a general form and can be applied t0 

integral equations of other classical boundary value problems in mathematical physics. 
Suppose T is a simple closed piecewise-smooth curve with a finite number of cornerpoints 

PI, Pa* . . .Y Pm. We will denote by 9' the boundary region, situated inside T , and by Qe the 
region external to I‘ . We will denote the opening span of the angle between the semitangents 
at the points P$ from the side of the region sZi by af . We will assume that p<c2<2~ when 
j= i, 2, . . .,m. 

We will first consider the internal Dirichlet problem 
Aui I 0 in Q", u In= 'p (1) 

where 'p is the contraction of the smooth function in R* on the COntOur I’ . The classical 
method of solving (1) is to find the function in the form of the potential of a double layer 

where 6 is the angle formed by the external normal n&o P at the point v=/=P, and the vector 

y - 5. The density p satisfies the integral equation 

(2) 

which is uniquely solvable in the space c(r) /4/. 
We will denote by p the solution of the external Dirichlet problem 

A@= 0 in a*, ua=rp 

As is well-known 

where u*(~) is the limiting value of the function U@ at infinity. 
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We will introduce the solution u of the external Neumann problem 

Au=0 in Qe, 5 au' a2 
an r=T-TT 
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(5) 

which tends to zero at infinity. 
Since 

v(z)= -& 
r 

we have 

s COP e 
IJ (Y) r 

-dsy=-& S( lo&da,, r=I1\upj 
r r 

which, together with (4) shows that the function (ZJI)-~(U- u'(w)) is equal to the solution p 
of (2). 

For simplicity we will assume that close to the point pj the region coincides with the 
sector (~,+i~~=p~'";O<p<~,O<o<a). 

Consider the case when O<a<n. As p-0 we have 

ZE R’ 

u”(.t) = p(O)+ C,P"sinho + a~, * (0) =1 + s (0) z1+ C (Pl+e), h',&~v tERc 

Since these equations can be differentiated, we have 

au' 
an - $ = hClpA-’ + 0 (pe), zEr\Pj. P-O 

Hence it follows from (5) that 

u (1) - u (0) - C,ph cosho - C,$ sin ho, t E V, p - 0 

Hence, when O<a<n we have 

(6) 

P(z)-*(O) -&-cGPhph, p-0 (7) 

where the plus sign corresponds to the ray e= 0, and the minus sign corresponds to the ray 
0 = 2n - a. 

The constant C, is determined by the method described in /2/. We will denote by n the 
function from C"(O,oo),q(p)= 1 when p<&q(p)= 0 when P>2b. We will put 

0 (z.) = v (2) - v (0) + C1q (p) p* sin ho (8) 

According to (5), this function is the solution of the problem 

Au, (I) = --CIA (11 (P) P'sin ho), I E PL 

aw 
I 

anr -g--$+Cr-&(q(p)pLsinho) 

In view of (6) and (8) we have 

w (5) - Cgheosho, 2 E 80, p - 0 

Hence (see /2/) the following equation holds: 

au’ 
CO -_--&i fCIA(g(p)phsinh)dz+-$ ~-$-+Cl-&(q@)phsinlo) 

a* r 

where ge is an harmonic function in Q , continuous outside any neighbourhood of the point pj 
with zero normal derivative on r 1. VP,, and having the asymptotic form 

I;" ($) - Pa cos ho, P - 0 

Hence, after simplification we obtain 

1 
Co--;;- f' s 

t 
$ds (9) 

r 

We will construct an harmonic extension Z'of the function I;" in the region Qi while pre- 
serving the continuity on r\pj. Then, in view of (9) we have 
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co=+ s [‘? -v (O)l$ ds 
r 

ilO) 

Equations (7) and (10) define the principal term of the asymptotic form of the function 
p-p(O) when O<a<n. 

Suppose now that rc<sr<Zn. Nhen ZER' and 6-O , the solution of (1) and (3) have the 
asymptotic form 

Hence 

Consequently, 

Ui(z) = s (O)+ L&p" sinao + +$ (0) 21 + z (0) ZL f 0 (p'+e). 
.z CC=- a 

ue (4 = v (0) + al, @ (0) =1 + $ (0) I.2 + 0 (p”“, 

du’ due 

dn’ an - = - GD,p”-’ + 0 (P") 

u(z)- "(0) - D*pO 
sina(o-n) 

CO>511 . cL<Of"n, + E or, P---o 

Hence, bearing in mind the relationship between the functions v and ~1, we find that 

p(z) - p (0) - * DIP0 

The constantD,is defined as follows /2/: 

I 
Dl= - il s df 

Iv (4 - q (O)] 7 ds ( 

r 

11) 

where 6' is a function harmonic in ~1, equal to zero on.r\ pf and having the asymptotic form 
5' - p-O sin 00. 

We will now consider the asymptotic form of the solution, conjugate to (2), of the integral 
equation of the external Neumann problem 

Au'=0 in a',++ =$on r\Upj (12) 

where 9 is a function that is smooth on the closed arcs G, - - . ., PnblPrn? PmP1 . If 

we have 

1 
v (9 - F s v (Y) -Log an +dy=-$?$(z). lEI”\UPj 

r 
x 

The asymptotic form of the density in the region of the corner point pI can be found 
from the equation 

(13) 

where vi is the solution of the Dirichlet problem 

Au' = 0 in Qi, cL = IF on r 

Suppose O<e<n. The solutions of (12) and (14) have the asymptotic form 

8 (2) - ue (0) - c,p" co9 h (w - a), (IQ 0 < 277 

Yi (2) -UC (0) -C,p~sillh(o-_)(sin~)-l, Ogo<a 

Hence, using (13) we obtain 

Y - *[2 (Zn- a)]-'C,p"'ctg $ 

(14) 

where the plus sign corresponds to the ray w= a, and, the minus sign corresponds to the ray 
0 = 0. The constant C, is given by /2/ 

1 * c: = --g- 
s f$ ds 

r 

where 5" is the same function as in (9). 



Consider the case when n<cr<k. The solutions of (12) and (14) have the asymptotic 

form 
d (I) - Ye (0) = 0 (p) (15) 

ui (+) - UC to) - CIPO sin am, o< o< a 

Hence, from (13) we obtain 

V - (za)-~ c&*, c, = -- ; 
s 
[v' - u"(O)& ds 

r 

(16) 
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where 6' is the same function as in (11). 
We will introduce the solution Ze of the Neumann problem 

1 
&=o in Q~, $ -=& on r\upj (17) 

We will show that a solution Ze of problem (17) exists, which vanishes at infinity, and 
in the region of the point p, has the asymptotic form 

Z"(Z) = p-0 
sino(e-en) 

Cosan + 0 (1) (18) 

For small P we have 

5' (2) = P-O sin eo + 0 (PO), 0 < 0 < a (19) 

We will denote by g and h the first terms on the right sides of (18) and (19) respectiv- 
ely. It is obvious that @ian = ah/an on r in the region of the point pje We will put ze = 

V-e, where qis the function introduced earlier, and e is the solution of the Neumann 
problem 

on r \ Pj with finite Dirichlet integral. 
The function z?, constructed in this way, is unique, apart from a constant term and, 

possibly, has a logarithmic increase at infinity. We will show that this increase does not 
in fact occur. 

We will denote by 11~~ and ~~6 the parts of the circle 7, of radius e with centre at the 
point pj situated in pi and G?e respectively , where e is a small positive number. Suppose also 
that Fe = I'\ Kc, where K, is a circle of radius a with centre at the point p, and VR is a 
c'ircle of fairly large radius R, inside which r is situated. It is obvious that 

We can show by a direct check that 

Hence, the flow of the solution Z* through 7R is 

5 G ds = j$ds+ 1 &dr+O(e’)= l $do+O(P)=O(E“) 

Ve re r*uvl 
_ . 

YR 

and at infinity the function Ze approaches a constant, which can be put equal to zero. 
We will now express the constant in (16) in terms of the boundary values of the solution 

of problem (1.2). In view of (15)-(17) we have 

- xc1 = s [D” - ve (0)] g ds $. 0 (E’-O) 

re uvee 

Using Green's formula we obtain 
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Passing to the limit in this expression as R--m and e-0, and using the first 
relation from (15) and (la), we see that the integrals over :(s and yee tend to zero. Hence 

and consequently the solution v of the integral equation of the external Neumann problem has 
the asymptotic form 

v (z) _ _(Z~)-'pU-'s Z'J, ds 

r 

The asymptotic form of the solutions of the integral equations of the external Dirichlet 
problem and the internal Neumann problem can be found similarly. 
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